2 research outputs found

    Enhancing feature selection with a novel hybrid approach incorporating genetic algorithms and swarm intelligence techniques

    Get PDF
    Computing advances in data storage are leading to rapid growth in large-scale datasets. Using all features increases temporal/spatial complexity and negatively influences performance. Feature selection is a fundamental stage in data preprocessing, removing redundant and irrelevant features to minimize the number of features and enhance the performance of classification accuracy. Numerous optimization algorithms were employed to handle feature selection (FS) problems, and they outperform conventional FS techniques. However, there is no metaheuristic FS method that outperforms other optimization algorithms in many datasets. This motivated our study to incorporate the advantages of various optimization techniques to obtain a powerful technique that outperforms other methods in many datasets from different domains. In this article, a novel combined method GASI is developed using swarm intelligence (SI) based feature selection techniques and genetic algorithms (GA) that uses a multi-objective fitness function to seek the optimal subset of features. To assess the performance of the proposed approach, seven datasets have been collected from the UCI repository and exploited to test the newly established feature selection technique. The experimental results demonstrate that the suggested method GASI outperforms many powerful SI-based feature selection techniques studied. GASI obtains a better average fitness value and improves classification performance

    Optainet-based technique for SVR feature selection and parameters optimization for software cost prediction

    No full text
    The software cost prediction is a crucial element for a project’s success because it helps the project managers to efficiently estimate the needed effort for any project. There exist in literature many machine learning methods like decision trees, artificial neural networks (ANN), and support vector regressors (SVR), etc. However, many studies confirm that accurate estimations greatly depend on hyperparameters optimization, and on the proper input feature selection that impacts highly the accuracy of software cost prediction models (SCPM). In this paper, we propose an enhanced model using SVR and the Optainet algorithm. The Optainet is used at the same time for 1-selecting the best set of features and 2-for tuning the parameters of the SVR model. The experimental evaluation was conducted using a 30% holdout over seven datasets. The performance of the suggested model is then compared to the tuned SVR model using Optainet without feature selection. The results were also compared to the Boruta and random forest features selection methods. The experiments show that for overall datasets, the Optainet-based method improves significantly the accuracy of the SVR model and it outperforms the random forest and Boruta feature selection methods
    corecore